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The effect of the attractive forces originating from van der Waals interactions on the dynamics of thin films
���100 nm� is often approximated in fluid dynamics as the disjoining pressure between two unbounded
parallel interfaces. However, it is known that this concept of the disjoining pressure, as a force per unit area
between parallel interfaces, cannot generally be extended to films of nonuniform thickness. In this paper, we
derive a formula for the disjoining pressure for a film of nonuniform thickness by minimizing the total
Helmholtz free energy for a thin film residing on a solid substrate. Comparing to the augmented Young-Laplace
equation, the disjoining pressure for a thin film of small slope on a flat substrate is shown to take the form

�=−
A123�4−3hx

2+3hhxx�
24�h3 , where A123 is the Hamaker constant for phases 1 and 3 interacting through phase 2; h, hx,

and hxx are the local film thickness, slope and second order derivative, respectively. For the limiting case of

parallel interfaces �e.g., hx=hxx�0�, the disjoining pressure reduces to �=−
A123

6�h3 in agreement with the clas-
sical Lifshitz expression for the van der Waals force. The derivation can be readily extended to more general
nonuniform films by constructing tangential planes at both interfaces of the films. Because of steric effects that
prevent molecules from overlapping each other, the molecular size cannot be neglected when applying the
mesoscopic concept of the disjoining pressure to films of thickness comparable to molecular scales.
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I. INTRODUCTION

This paper is concerned with a generalization of the the-
oretical approach, pioneered by Deryagin �1� and Lifshitz
�2,3� and discussed more recently by Israelachvili �4�, for the
inclusion of van der Waals forces in a theoretical framework
suitable for fluid dynamics studies of thin liquid films via the
introduction of the so-called disjoining pressure. It builds
upon the recent study of Wu and Wong �5� but differs from it
in important fundamental aspects, and leads to a different
result.

There are two approaches that have been developed for
continuum-based fluid mechanics studies of free boundary
problems involving the motion of fluid interfaces. One is the
so-called “diffuse interface” approach �6�, which is usually
based on a phenomenological model due to Cahn and Hill-
iard �7�. If we define a phase-field variable � such that the
concentrations of the two components in the interfacial re-
gion are �1+�� /2 and �1−�� /2, the Cahn-Hilliard theory
postulates a functional for the free energy of “mixing” of the
two components in the interfacial region that is truncated at a
square-gradient dependence ����2. This truncation of the
Cahn-Hilliard free energy means that it can only represent
“weakly” nonlocal interactions, and thus does not properly
capture the attractive van der Waals forces across a thin film
�8,9�. Hence, although the diffuse interface theories have
been successfully used for free boundary problems such as
the motion of a single macroscopic drop in flow where van
der Waals forces do not play a significant role, they are cur-
rently unable to cope with problems such as coalescence that

involve the rupture of a thin film due to the attractive van der
Waals forces.

In the alternative �and older� continuum mechanics view,
interfaces or boundaries between two macroscopic phases
are treated as pure mathematical surfaces of zero thickness
and zero mass, across which macroscopic properties such as
the density of viscosity may jump discontinuously from the
value for one phase to the value for the other.1 The macro-
scopic property of interfacial tension or interfacial free en-
ergy per unit area accounts for the difference in the collective
molecular interactions for a heterogeneous system containing
a fluid interface with respect to those interactions that would
exist if the system were homogeneous �4,7,9�. In the con-
tinuum mechanical framework, the interfacial tension is of-
ten interpreted as an effective force per unit length that acts
in the direction tangent to the interface �12�. In a system in
which all phase boundaries and interfaces are sufficiently far
apart, the incorporation of interfacial tension into the stress
balance at fluid interfaces is sufficient, together with the
macroscopic Navier-Stokes equations and the additional con-
ditions of continuity of velocity and the kinematic condition
at the interface, for a complete description of fluid motion
and interface shapes �13�. However, if the distance between
interfaces or boundaries approaches mesoscopic dimensions
�100 nm or less�, the collective effect of molecular interac-
tions across this mesoscopic region must be taken into ac-
count. Examples where this is relevant include the three-
phase region near a contact line �5,14–16� or the thin film
that separates a pair of drops just prior to coalescence
�17–19�.

*Present address: MEMC Electronic Material Inc., 501 Pearl
Drive, St. Peters, MO 63376

1It was pointed out by one of the referees that some statistical
physicists refer to this as a “sharp-kink” approximation, a terminol-
ogy introduced in this context by Dietrich and colleagues �10,11�.
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The difference between the complete molecular interac-
tions and the interactions that are accounted for as interfacial
tension are modeled as additional intermolecular based
forces. The most familiar example is the van der Waals force.
Two approaches have been pursued for the incorporation of
these forces in the macroscopic, continuum formulation. One
incorporates the additional intermolecular potential directly
into the Navier-Stokes equation as a body force term
�20–22�, but this approach is extremely unwieldy for free
boundary problems where the shapes of the interfaces �and
thus the fluid domains� change with time.

The second, more commonly adopted approach, utilizes
the disjoining pressure approximation, as originally devel-
oped by Lifshitz �2,3� for the case of a thin film. In this
approach, the additional intermolecular forces are replaced
by an attractive force per unit area, which can be thought of
as a pressure applied at the boundaries of the film, known as
the disjoining pressure. An exact expression for the disjoin-
ing pressure developed by Lifschitz �2,3�, is available for a
thin film between two unbounded parallel flat surfaces,
which may be either interfaces or solid boundaries. In the
simplest �nonretarded� approximation, this expression is �
=−A / �6�h3�, where h is the distance between the interfaces
and A is the Hamaker constant �which depends on the fluids
involved and can be evaluated via the Lifshitz theory �2,3��.
This simple expression for the disjoining pressure has been
applied in a number of papers to study the stability and rup-
ture of thin liquid films �11,23–25�, even though the bound-
aries are generally neither flat nor unbounded.

However, as already noted, the simple formula for the
disjoining pressure is exact only for the force per unit area
between two unbounded parallel interfaces, and thus should
strictly be applied only to thin films of uniform thickness. A
number of efforts to derive expressions for the disjoining
pressure for films of nonuniform thickness have been re-
ported �5,14,15,26–29�. Moreover, in the limit as the film
thickness goes to zero, h→0, the classical formula for the
disjoining pressure becomes unbounded. As argued in some
references �5,14�, this leads to problems with the description
of a thin film ending on a substrate. Hocking �14�, based on
the work of Miller and Ruckenstein �30�, tried to resolve this
problem by deriving a nonsingular expression for the disjoin-
ing pressure for a liquid wedge with a small contact angle
residing on a solid substrate and neglecting the vapor effects.
Hocking’s expression �14� takes the form �=−BH��H

4

−hx
4� /h3, where BH and �H are material functions defined in

Hocking’s paper and h and hx are the local film thickness and
slope, respectively. Based on Hocking’s expression, as long
as �H

4 −hx
4→0 faster than h3 as we approach the edge of the

film, the disjoining pressure � converges to a finite value.
However, in a more recent study, Wu and Wong �5� have
correctly noted that Hocking’s derivation contains funda-
mental flaws. The most important is that Hocking applied an
“equilibrium” condition, namely, �=const only at the inter-
face, which does not guarantee equilibrium for the system as
a whole.

In a completely independent and separate series of stud-
ies, beginning with the work of Robbins et al. �27�, a theo-
retical framework that is similar to Hocking’s analysis was
developed by the statistical physics community, most notably

Dietrich and co-workers �28,29�. As in the work of Hocking,
these investigators mistakenly used an equilibrium condition
applied only at the fluid interface.

Wu and Wang �5� considered a liquid drop �i.e., a nearly
parallel thin film� on a solid substrate. By minimizing the
total free energy, and calculating a quantity that they reported
to be the excess free energy within a wedge shaped region
above that for a “bulk” fluid, they obtained an alternative
expression for the disjoining pressure in the small-slope limit
containing a second-order derivative �=−Bw�	4−hx

4

+2hhx
4hxx� /h3, where Bw�3�
 f

2� f f�1−�� /16 and 	��8�1
−� / �9−9���1/4 is the contact angle. The parameters that ap-
pear in these expressions are =
s� fs /
 f� f f and �
=
g� fg /
 f� f f, where 
s, 
 f, and 
g, are the number densities
of solid, liquid, and vapor molecules, and � f f, � fg, and � fs
are the liquid-liquid, liquid-vapor, and liquid-solid van der
Waals potential constants, respectively. Unlike Hocking’s
�14� theory, which explicitly neglects the vapor effects, Wu
and Wong’s derivation �5� is intended as a general formula-
tion for arbitrary three-phase systems. Although their ap-
proach is a step in the right direction, there are issues with
the details. An indication of this is the fact that their expres-
sion for the disjoining pressure does not have the correct
form for the limiting case of two parallel interfaces hx=hxx
�0. In particular, their expression in this case reduces to

� = − Bw	4/h3 = − �
 f
2� f f�1 −


s� fs


 f� f f
	
 6h3,

which depends only on the fluid-fluid and fluid-solid van der
Waals constants but is independent of the properties of the
third phase. This suggests that there is some problem with
their calculation.

In this paper, we have followed the same approach as
outlined by Wu and Wong �5�, but with several fundamental
differences. In particular, we define the disjoining pressure
based on the equilibrium condition of Yeh et al. �15,16� for a
liquid thin film residing on a flat solid substrate, but we
modify it to include the excess energy outside the film. As-
suming a van der Waals hard sphere interaction at the mo-
lecular level �see Eq. �2��, the crucial difference is that we
start with the total intermolecular potential, obtained by in-
tegrating throughout the whole heterogeneous system, and
obtain the excess energy associated with the disjoining pres-
sure by subtracting the interfacial tension potential from the
total intermolecular potential. In the limit of a small slope,
the disjoining pressure given by this approach takes the rela-
tively simple form

� = −
�E1

�h
+

�

�x
� �E1

�hx
	 = − A123�4 − 3hx

2 + 3hhxx�/24�h3,

�1�

where E1 is the excess energy per substrate area within the
thin film region, A123 is the Hamaker constant for the inter-
actions between phase 1 and 3 through phase 2, and we use
the numbers 1, 2, and 3 to denote the vapor, liquid, and solid
phases. In Eq. �1�, h, hx, and hxx are the local film thickness,
slope and second-order derivative, respectively. A key point
is that the form for the Hamaker constant depends on the
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properties of all three phases, and is completely consistent
with the Lifshitz theory for nonretarded van der Waals forces
�2–4,31� �i.e., in the limiting case of two parallel interfaces,
hx=hxx=0, we get the classical Lifshitz result �
=−A123 / �6�h3��.

The extension to more general nonuniform thin films, for
example, those that are not necessarily bounded by solid sub-
strates, is more or less trivial, and can be achieved by con-
structing tangential planes along the top and the correspond-
ing bottom interfaces of the film. As expected from Eq. �1�,
the disjoining pressure for a nonuniform thin film is a func-
tion of the film thickness, the local slopes and the second
order derivative of both interfaces.

One needs to be very careful when trying to extrapolate
the concept of disjoining pressure, basically a mesoscopic
concept, to molecular scales. The main problem arises from
the characteristic length scales at which molecules are pre-
vented from overlapping because of steric effects. Such
steric effects automatically preclude extrapolation of the
thickness of the film to zero values; they actually provide a
minimum thickness which is of the order of molecular di-
mensions and this prevents infinite self-interactions as well
as infinite interactions between molecules at the boundaries
between different phases.

II. INTERFACIAL TENSION

The basic idea in the recent work of Wu and Wong �5�
was to screen out the disjoining pressure for a thin film by
subtracting the contribution that corresponds to the interfa-
cial tension from the total intermolecular potential. Concep-
tually, this is clearly the correct approach. Both the van der
Waals force and the interfacial tension �or the interfacial free
energy� originate from molecular interactions, and hence
both are included in the total intermolecular potential. But
Wu and Wong calculate the intermolecular potential only
within the liquid region, and the term they subtract, which
they term the “bulk” value of the interfacial potential does
not completely correspond to the interfacial free energy. It is
these factors that lead to the disagreement of their result with
the Lifshitz’s theory for the van der Waals forces as dis-
cussed in Sec. I.

To provide a clear basis for distinguishing the disjoining
pressure from the interfacial tension, we begin by briefly
reviewing the concept of interfacial tension from the view-
point of intermolecular interaction potential �4,32�. For sim-
plicity, we assume that the molecules are equal-sized spheri-
cal particles that interact via a van der Waals–like attractive
potential of the form

W�r� = �− C/r6, r � � ,

� , r � � ,
� �2�

where � is the molecular diameter, r is the center to center
distance between two molecules and C is the potential con-
stant. The hard wall part of the pair potential prohibits mol-
ecules from overlapping with each other. As one of the ref-
erees suggested, one would not choose such a simple model
if the objective was to obtain a formula valid for calculating
the interfacial tension even as the separation distance actu-

ally tends to zero. However, this model is sufficient for the
present goal of a modified formula for the disjoining pres-
sure. Our objective in this section is a formula for the inter-
facial tension, consistent with the model �2�, which can be
subtracted from the total intermolecular potential to obtain a
formula for the disjoining pressure.

Let us first consider a uniform phase, denoted by the num-
ber 1, occupying all space, e.g., phase 1 contains molecules
of diameter �1 with number density n1. The potential energy
per molecule is obtained by summing the potentials of all
pairs of molecules over all of space and thus the intermo-
lecular potential per unit volume of the uniform phase 1 is
given by �4,5,14�

�1
* =

n1

2


�1

�

−
C11

r6 �4�r2n1�dr = −
2�C11n1

2

3�1
3 = −

2A11

3��1
3 ,

�3�

where A11=�2C11n1
2 is the Hamaker constant �3� and C11 is

the van der Waals force constant. Similarly, the inter-
molecular potential per unit volume of a uniform phase 2 is
�

2
*=−2A22 / �3��2

3� with A22=�2C22n2
2.

In order to determine the expression for interfacial tension
at the interface between bulk fluid phases 1 and 2 in terms of
intermolecular interactions, we consider the idealized system
shown in Fig. 1, which has pure phase 1 for y�0 and pure
phase 2 for y�0. Strictly speaking, for vapors and liquids,
the system in Fig. 1 does not lead to the lowest free energy
and, hence, does not exist in reality. In the real system, all
interfaces have a definite structure and thickness. However,
for the purpose of simplification, we assume the phases are
sharply divided, neglect the mixing entropy and kinetic en-
ergy, and focus only on the effects of molecular interactions
on interfacial tension. The reader is referred to the papers of
Cahn and Hilliard �7,33,34� for a much more complete ther-
modynamic description.

The intermolecular potential per unit volume of phase 1 at
the point of �x0 ,y0 ,z0� in the nonuniform system in Fig. 1
can be calculated by subtracting the 1-1 potential in the re-
gion for y�0 from the expression �3� for an unbounded
phase 1 and adding the 1-2 potential.

FIG. 1. The left panel represents a nonuniform system consist-
ing of two macroscopic phases with a sharp interface; the right
figure represents the microscopic structure of the sharp interface
where a molecular cutoff length D is introduced to prevent the
molecules from overlapping with each other.
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�1 = −
2A11

3��1
3 +

�A11 − A12�
2�2 

−�

0

dy
−�

+�

dx
−�

+� 1

��x − x0�2 + �y − y0�2 + �z − z0�2�3dz

= −
2A11

3��1
3 +

�A11 − A12�
12�y0

3 , �4�

where A12=�C12n1n2. The corresponding expression for the
intermolecular potential per unit volume of phase 2 at
�x̂0 , ŷ0 , ẑ0� in Fig. 1 is given by

�2 = −
2A22

3��2
3 −

�A22 − A12�
12�ŷ0

3 . �5�

The interfacial free energy or interfacial tension is, by defi-
nition, the difference per unit area of interface between the
actual free energy of the system and that which it would have
if the properties of the phases were continuous throughout
�7�. The interfacial tension for the nonuniform system in Fig.
1 is therefore given by

�12 = 
+D

+�

��1 − �1
*�dy0 + 

−�

−D

��2 − �2
*�dŷ0

=
1

24�D2 �A11 + A22 − 2A12� , �6�

where, for both integrals, we integrate from the interface
outward to obtain a result that is invariant under rotations
about an axis along the interface.

In the integrals in Eq. �6�, we set a cutoff length D, of the
scale of the larger of �1 or �2, because of the steric effects
we mentioned above. This cutoff avoids unphysical un-
bounded molecular interactions, and is commonly applied
for this type of calculation. According to Eq. �6�, the inter-
facial tension involves integrations extending to infinity and,
in this sense, it is a collective effect involving molecular
interactions throughout the whole macroscopic nonuniform
system.

III. DISJOINING PRESSURE FOR A TWO-DIMENSIONAL
THIN FILM RESIDING ON A FLAT SUBSTRATE

We now consider a two-dimensional liquid thin film in the
form of a “drop” on a flat solid substrate shown in Fig. 2, the
same system discussed by Wu and Wong �5�. We also denote
the vapor, liquid, and solid phases with the numerals 1, 2,
and 3. We assume the phases are made up of equal-sized,
spherical molecules and are characterized by self-interaction
van der Waals potentials leading to Hamaker constants A11,
A22, and A33.

The thermal equilibrium condition given by minimizing
the total Helmholtz free energy for the two-dimensional drop
shown in Fig. 2 was studied thoroughly by Yeh and his co-
workers �15� and applied in Wu and Wong’s derivation �5�
for a slope-dependent disjoining pressure. In addition to the
interfacial tension of Eq. �6� for the liquid-vapor interface

�obtained by assuming a single interface with a semi-infinite
body on either side�, there is an excess energy per unit sub-
strate area within the thin film region because of the proxim-
ity of the interface between the solid substrate and the liquid,
as argued in Yeh’s analysis �15�. It is this quantity that is
associated with the disjoining pressure. We follow the prece-
dent from Wu and Wong’s analysis �5�, and assume that this
excess energy can be approximated as a function of the local
film thickness h and the local film slope hx, i.e., E�h ,hx�. The
excess energy is most important in the film region where the
interfaces 2-3 and 1-2 are very close to each other. Outside
the droplet, along interface 1-3, there is also an excess en-
ergy, because of the nearby presence of the liquid molecules
in the drop, which becomes significant upon approach to the
contact line. We will assume that the excess energy beyond
the liquid thin film region is a function of the contact angle
�hx�x=�x0

as well as the distance to the contact line and that it
decays to zero at infinity x→ �� �see Fig. 2�.

Accounting for the excess energy both inside and outside
the thin film region, the thermal equilibrium condition, in the
spirit of Yeh’s derivation �15�, for a thin film residing on a
flat substrate that is symmetric about the axis y as shown in
Fig. 2, is given by

��
−x0

0

��12
�1 + hx

2 + �23 − �13 + E1�h,hx� + pch�dx

+ 
−�

−x0

E2��x0 + x�, �hx�x=x0
�dx� = 0, �7�

where � represents the variation of the whole function inside
the outer parentheses with respect to h ,hx and the position of

Phase 3 (Solid)

Phase 1 (Vapor)

-x0 x0
x

y

Phase 2
(Liquid)

h

Interface 1-2

Interface 2-3

Interface 1-3

FIG. 2. Schematic representation of a two-dimensional thin film
residing on a flat substrate and the common contact lines are located
at x0 and −x0. The film thickness is denoted by h.
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the contact line x0; E1�h ,hx� is the excess energy per unit
substrate area in the film region �−x0�x�x0� while E2��x0
+x� , �hx�x=x0

� is the same quantity outside the film region
��x��x0�; pc is a Lagrange multiplier for mass conservation,
and �12, �13, and �23 are the interfacial tensions for interfaces
1-2, 1-3, and 2-3, respectively. Expanding Eq. �7� yields the
governing equation in the film region, that is, phase 2

�12hxx

�1 + hx
2�3/2 − � �E1

�h
−

d

dx
� �E1

�hx
	� = pc �8�

together with the symmetry boundary condition at x=0

�12hx

�1 + hx
2�1/2 +

�E1

�hx
= 0 �9�

and the boundary condition at x=−x0

�12

�1 + hx
2�1/2 + �23 − �13 + �E1 − hx

�E1

�hx
�

− 
−�

x0 �hxx
�E2

�hx
�

x=−x0

dx = 0. �10�

The disjoining pressure can be defined from Eq. �8�, by
comparing with the augmented Young-Laplace equation
�15�, as

� = −
�E1

�h
+

d

dx
� �E1

�hx
	 . �11�

It can be seen that the excess energy outside of the film
region �i.e., E2 in the region x� �−� ,−x0�� does not affect
the disjoining pressure. However, E2 does affect the bound-
ary condition at the contact line x=−x0 �see Eq. �10��. The
consequences of this modification are not clear to us at this
time. It is most likely important in determining the contact
angle, but may also be related to the concept of a “line ten-
sion” at the contact line. Since the objective of this paper is
the disjoining pressure, we do not pursue this issue here.

The result, Eq. �11�, is the same as obtained by Wu and
Wong �5�. However, our calculation of the excess energy per
unit substrate area E1 differs fundamentally from their ap-
proach. First, we sum the intermolecular potentials in all
three of the bulk phases, rather than just the intermolecular
potential for the molecules in the liquid phases. Second, we
subtract the portion of the intermolecular potential that cor-
responds exactly to the interfacial tension, rather than sub-
tracting the “bulk” form of the intermolecular potential as
done in the Wu and Wong analysis. The result obtained in
this way is exactly the excess energy E1. In particular, we
avoid mixing effects of the intermolecular potentials attrib-
uted to interfacial tension from those of other van der Waals
forces.

The thin film near the contact line, at x=−x0 in Fig. 2, is
schematically shown in Fig. 3. Assuming van der Waals in-
teractions only, we sum the pairwise potentials between a
molecule and all the other molecules throughout the system
to obtain the total intermolecular potential per unit volume

�1 = −
2A11

3��1
3 +

1

12�
�a1�A12 − A11� + �A11 − A13�

v1
3 +

a2�A12 − A11�
v2

3 � , �12�

�2 = −
2A22

3��2
3 +

1

12�
�a1�A22 − A21� + �A21 − A23�

v1
3 +

a2�A22 − A21�
v2

3 � , �13�

�3 = −
2A33

3��3
3 +

1

12�
�a1�A32 − A31� + �A31 − A33�

v1
3 +

a2�A32 − A31�
v2

3 � , �14�

v1

v1

v1

v2

v2
v2

Phase 2Phase 1

Phase 3

R
R

R

2

1

3

x

y

Interface 1-2

Interface 2-3Interface 1-3

FIG. 3. Schematic of a three-phase thin film system near the
contact line; phase 1 corresponds to �� �� ,��, phase 2 corresponds
to �� �0,��, phase 3 corresponds to �� �� ,2��, where � is the
contact angle; v1 and v2 are the distances of a point to the horizontal
interface, e.g., interface 1-3 or 2-3, and to the inclined interface 1-2,
respectively.
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where a1= 1
2 + 3

4 cos �− 1
4cos3 �, a2= 1

2 + 3
4 cos��−��

− 1
4cos3��−��, v1=R sin �, v2=R sin��−��; phase 1 corre-

sponds to �� �� ,��; phase 2 corresponds to �� �0,��; and
phase 3 corresponds to �� �� ,2��. In addition, A11
=�C11n1

2, A22=�C22n2
2, A33=�C33n3

2, A12=A21=�C12n1n2,
A13=A31=�C13n1n3, A32=A23=�C23n2n3 are the Hamaker
constants as discussed above; �1,�2, and �3 are the diameters
of the molecules of phase 1, 2, and 3 respectively; their num-
ber densities are denoted by n1, n2, and n3. The result given
by Eq. �13� is the intermolecular potential for the liquid
phase, and is the same as that calculated by Wu and Wong
�5�. The pairwise additivity of the intermolecular interactions
that is inherent in Eqs. �12�–�14� ignores many-body effects
of neighboring molecules. The effects from the immediate
neighborhood could alter the molecular polarizabilities and
make the van der Waals potentials for macroscopic bodies
actually nonadditive �4�. The nonadditivity of van der Waals
potential for multiphase systems, however, can be circum-
vented using the Lifshitz theory of van der Waals forces, as
discussed below.

Without loss of generality, we subtract the constant inter-
molecular potential of a uniform phase ��

1
*=−2A11 / �3��1

3�;
�

2
*=−2A22 / �3��2

3�; �
3
*=−2A33 / �3��3

3�� since it plays no
role in determining the excess energy. We obtain the energy
per unit substrate area by integrating the remaining part
throughout the complete heterogeneous system, along the
vertical y direction in Fig. 3,

�1 = 
−�

−D

��3 − �3
*�dy + 

D

h−D�1+hx
2

��2 − �2
*�dy

+ 
h+D�1+hx

2

+�

��1 − �1
*�dy , �15�

�2 = 
−�

−D

��3 − �3
*�dy + 

D

+�

��1 − �1
*�dy . �16�

Here, �1 and �2 represent the energy per unit substrate area
inside and outside the thin film region, respectively. Inside
the thin film region, that is, for x�−x0 in Fig. 3, the integra-
tion along y crosses two interfaces, namely, the 1-2 and 2-3
interfaces, while outside �x�−x0�, the integration crosses the
1-3 interface only. As discussed previously, we follow stan-
dard protocol, and introduce a molecular “cutoff” length D at
the interface to exclude molecular overlaps �and infinite in-
teractions�. For simplicity, we assume the characteristic mo-
lecular length scales for the 1-2, 2-3, and 1-3 interfaces have
the same value D. In Eq. �15�, the integration limit at the
interface 1-2 contains the term �1+hx

2 to account for its
slope.

In the asymptotic limit D /h→0 �the film thickness is by
far larger than the molecular cutoff length D�, the energy per
unit substrate area defined in Eqs. �15� and �16� reduces to

�1 =
1

24�D2 �A22 + A33 − 2A23� +
�1 + hx

2

24�D2 �A11 + A22 − 2A12�

+ E1�h,hx�

= �23 + �1 + hx
2�12 + E1�h,hx� , �17�

�2 =
1

24�D2 �A11 + A33 − 2A13� + E2�x0 − x, �hx�x=x0
�

= �13 + E2�x0 − x, �hx�x=x0
� . �18�

The energy per unit substrate area presented in Eqs. �17�
and �18� clearly consists of two parts: one arising from the
interfacial tension and the other from excess energy. The first
two terms of �1 correspond to the 2-3 and 1-2 interfacial
tension contributions, respectively, and �1+hx

2 in the second
term of �1 accounts for the slope of the 1-2 interface. For
�2, the first term is the 1-3 interfacial tension. The expres-
sions for the excess energy per substrate area E1 and E2 are
presented in the Appendix; they are complicated nonlinear
functions of the film thickness, the local film slope, the con-
tact angle, and the distance to the contact line. However, for
the small slope limit hx�1 �which is consistent with the
assumption that E1 is a function only of h and hx and not
higher order derivatives�, E1 and E2 reduce to simpler forms

E1�h,hx� = − � 1

12�h2 +
hx

2

16�h2	�A22 + A13 − A12 − A23� ,

�19�

E2��x0 − x�, �hx�x=−x0
� =

�A11 + A23 − A12 − A13�
48��x0 − x�2

�hx�x=−x0
.

�20�

From the Lifshitz theory of the non-retarded van der
Waals force �2–4,31�, the Hamaker constant for two phases
interacting through a third phase can be approximated via the
combining relations �4�

A123 � ��A11 − �A22� � ��A33 − �A22�

� �A22 + �A11A33 − �A11A22 − �A22A33�

� �A22 + A13 − A12 − A23� , �21�

A213 � ��A22 − �A11� � ��A33 − �A11�

� �A11 + �A22A33 − �A11A22 − �A11A33�

� �A11 + A23 − A12 − A13� . �22�

Here, A123 represents the Hamaker constant for phase 1 and
phase 3 interacting through phase 2 while A213 represents the
Hamaker constant for phase 2 and phase 3 interacting
through phase 1. Substituting Eqs. �21� and �22� into Eqs.
�19� and �20�, the excess energies per unit area reduce to

E1�h,hx� = − A123� 1

12�h2 +
hx

2

16�h2	 , �23�

E2��x0 − x�, �hx�x=−x0
� =

A213

48��x0 − x�2
�hx�x=−x0

. �24�

The disjoining pressure defined in Eq. �11� is then calculated
as
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� = −
�E1�h,hx�

�h
+

d

dx
� �E1�h,hx�

�hx
	

= −
A123�4 − 3hx

2 + 3hhxx�
24�h3 . �25�

The integral corresponding to the boundary condition at
x=−x0, e.g., Eq. �10�, with a cutoff molecular length D is
�−�

−x0�hxx
�E2

�hx
�x=−x0

dx=
A213

48�D �hxx�x=−x0
.

In the limiting case of two parallel interfaces, i.e.,
for hx=hxx�0, the disjoining pressure reduces to �
=−A123 / �6�h3� which is the expected form for the disjoining
pressure between two parallel, plane interfaces based on the
Lifshitz theory �2–4,31�. As h→0, the disjoining pressure
�=−A123�4−3hx

2+3hhxx� / �24�h3� appears to be unbounded.
The characteristic molecular length D implicitly built into
the film thickness h, however, will not allow h=0, since the
molecules cannot overlap. Thus, the lower limit for the film
thickness is D instead of zero. The cutoff molecular length D
is also built into the interfacial tension as discussed in the
previous section. By the same reasoning, the distance to the
contact line �x0−x� cannot be smaller than the cutoff distance
D. The excess energy E2 outside the thin film region in Eqs.
�20� and �24� is therefore bounded.

Let us now consider a three-phase system with two par-
allel interfaces, Fig. 4. The energy per unit area consists of
two interfacial tensions: �12 and �23, and an excess energy
E=−A123 / �12�h2�, so that according to Eq. �23�:

� = �12 + �23 +
− A123

12�h2 . �26�

Let h→D and substitute the interfacial tension defined in Eq.
�6� and the Hamaker constant A123 in Eq. �21� into Eq. �26�:

� →
A11 + A22 − 2A12

24�D2 +
A22 + A33 − 2A23

24�D2

−
A22 + A13 − A12 − A23

12�D2

=
A11 + A33 − 2A13

24�D2 = �13. �27�

Thus, as one would expect, when h→D, the three-phase sys-
tem reduces to a two-phase system. Interfaces 1-2 and 2-3
disappear and a new interface 1-3 is generated, leading to a
system energy per unit area given by Eq. �27�.

Both Hocking �14� and Wu and Wong �5� adopted the
point of view that the cutoff length was so small that the
limit h→0 is meaningful, which is equivalent to saying that
D�h as h approaches zero. The expressions that these in-
vestigators obtained are well behaved in this limit provided
that the local slope at the contact line is approaching the
contact angle. This results from canceling terms that elimi-
nate the singularities that otherwise would have appeared
had they not assumed that D�h as h→0.

IV. DISJOINING PRESSURE FOR GENERAL TWO-
DIMENSIONAL NONUNIFORM THIN FILMS

Based on Eq. �25�, the disjoining pressure is a function of
the local film thickness, the slope and the second order de-
rivative of the film. The film thickness term corresponds to
the disjoining pressure between two parallel interfaces while
the slope and the second order derivative are introduced to
correct for the deviation from the parallel interface configu-
ration. If the film thickness varies linearly with the lateral
position, the only correction needed is given by the term that
depends on the slope. The second order derivative term ac-
counts for curvature effects. The disjoining pressure in Eq.
�25� was obtained in the limit of small film slope hx and the
characteristic length scale for the curvature term is generally
chosen as the film width, which is usually much larger than
the film thickness.

The formulation of disjoining pressure discussed so far is
for a thin film with at least one flat interface. However, the
derivation for that special case can be readily extended to the
general nonuniform thin film in the small slope limit.

Let us consider a two-dimensional nonuniform thin film,
as shown schematically in Fig. 5. Consider two tangential
planes at the top �1-2� and bottom �2-3� interfaces. The two
tangential planes �see Fig. 5� are arranged in the geometry of
the three-phase contact line problem we discussed in the pre-
vious section, where the contact angle is h1x−h2x. Thus, in
the small slope limit, we can approximate the disjoining
pressure for the nonuniform thin film with the disjoining
pressure for the three-phase contact line problem. Substitut-
ing h=h1−h2, hx=h1x−h2x, and hxx=h1xx−h2xx into Eq. �25�,

Phase 1

Phase 2

Phase 3

Phase 1

Phase 3

h

h D

FIG. 4. As the film thickness approaches to the cutoff molecular
scale h→D, a three-phase system with two parallel interfaces
switches to a two-phase system. This implies that the film thickness
cannot go directly to zero since molecules are not allowed to over-
lap each other.

Phase 2
h1x
-h2x

x

y

y-h2(x) 0 Phase 3

Phase 1y-h1(x) 0

hx=h1x- h2x h=h1- h2

FIG. 5. The disjoining pressure for a nonuniform thin film in the
small slope limit is approximated by constructing the tangential
planes at the top and bottom interfaces of the thin film.
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we obtain a new expression for the disjoining pressure for
the nonuniform thin film

� = −
A123�4 − 3�h1x − h2x�2 + 3�h1 − h2��h1xx − h2xx��

24��h1 − h2�3 .

�28�

Based on Eq. �28�, the disjoining pressure for a general non-
uniform thin film is a function of the local film thickness, the
local slope and the second order derivative at both interfaces.
The second order derivative term corrects for the deviation
of the interface from its tangential plane.

During the coalescence of equal-sized deformable drops
in a suspending fluid via a head-on collision �17–19�, the thin
film has a reflection symmetry �e.g., in Fig. 5, at the inter-
faces y−h1�x��0 and y−h2�x��0, with respect to the plane
of y=0�. By utilizing this symmetry, namely, h�x�=h1�x�
=−h2�x�, the disjoining pressure can be further simplified to
obtain

� = −
A123�1 − 3hx

2 + 3hhxx�
48�h3 . �29�

In this approximation the disjoining pressure of a nonuni-
form thin film is given by the disjoining pressure between
the two tangential planes along the interfaces. This expres-
sion goes beyond the usual approximation for the disjoining
pressure for a nonuniform thin film which only accounts for
the local film thickness �equivalent to the disjoining pressure
between two parallel interfaces, effectively a zeroth order
approximation�. Following the procedure described herein
one can develop other approximations involving higher order
derivatives in the limiting case of small slopes. For large
slopes, one expects significant nonlinear terms where a full
numerical evaluation is likely to be necessary.

V. CONCLUDING REMARKS

We have presented a thermodynamics equilibrium condi-
tion for a thin liquid film on a solid substrate based on the
formulation of Yeh et al. �15�. Our condition was obtained by
accounting for the excess energy outside the thin film region;
we showed that this excess energy affects the boundary con-
dition at the contact lines. By comparing to the augmented
Young’s equation, an expression for the disjoining pressure is
given in Eq. �11� which depends on the variations of the
excess energy as a function of the local film thickness and
the local film shape.

To obtain the excess energy due to the proximity of inter-
faces across a thin film, originating from van der Waals
forces, we integrated the total intermolecular potential
throughout the whole system to obtain the total energy per
unit area, and then subtracted the contributions due to the
interfacial tension. Applying the combining law for the Ha-
maker constants based on the Lifshitz theory for van der
Waals forces �2–4,31�, the nonadditive expression for the
van der Waals potential for a macroscopic multiphase system
was reduced to a simpler expression leading to a new for-
mula for disjoining pressure in the small slope limit �

=−
A123�4−3hx

2+3hhxx�
24�h3 . This expression takes into account the lo-

cal film slope and the curvature of the thin film. In the lim-
iting case of two parallel interfaces, hx=hxx�0, the disjoin-
ing pressure reduces to �=−

A123

6�h3 , a well known result from
the classical Lifshitz theory �2–4,31� for the disjoining pres-
sure.

The disjoining pressure for a thin film on a flat substrate
was then extended to a general nonuniform thin film by con-
structing the tangential planes along both interfaces. The dis-
joining pressure obtained by this approach is a function of
the local film thickness, the slope and the second order de-
rivative of both interfaces of the thin film.

In our analysis we introduced a molecular cutoff length D
to account for the steric effects between individual molecules
at the interfaces. We have, however, ignored the effects of
mixing entropy and molecular kinetic energy, which lead to
the “so-called” diffuse interface �7,33,34�. In this spirit, a
self-consistent multiscale approach was developed to include
molecular-scale effects in mesoscopic formulations of dis-
joining pressure.
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APPENDIX: THE EXCESS ENERGY PER UNIT
SUBSTRATE AREA

The total energy per unit substrate area inside ��1� and
outside ��2� the thin film region is obtained by integrating
the molecular potential throughout the whole heterogeneous
system, along the vertical y direction, as schematically
shown in Fig. 3,

�1 = 
−�

−D

��3 − �3
*�dy + 

D

h−D�1+hx
2

��2 − �2
*�dy

+ 
h+D�1+hx

2

+�

��1 − �1
*�dy , �A1�

�2 = 
−�

−D

��3 − �3
*�dy + 

D

+�

��1 − �1
*�dy . �A2�

In the limit D /h→0, where the local film thickness h is
much larger than the molecular cutoff length D, Eqs. �A1�
and �A2� are calculated by following the integration strategy
described in Wu and Wong’s paper �5�:

�1 =
1

24�D2 �A22 + A33 − 2A23� +
�1 + hx

2

24�D2 �A11 + A22 − 2A12�

+ E1�h,hx� , �A3�

�2 =
1

24�D2 �A11 + A33 − 2A13� + E2�x0 − x, �hx�x=x0
� ,

�A4�

where
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E1�h,hx� =
�A23 − A13��2hx

2 + 2�3 + �1 + hx
2� + hx

2�3 + 2�1 + hx
2��

96�h2 +
�A12 − A11��2 + hx

2 + 2hx
4 + 2�1 − hx

3��1 + hx
2�

96�h2�1 + hx
2

+
�A12 − A22��4 + 4hx

4 + hx
2�5 + 3�1 + hx

2��

96�h2�1 + hx
2

−
A22

24�h2 �A5�

and

E2��x0 − x�,hx�x=−x0
� = �2hx�x=−x0

+ �2�1 + �hx�x=−x0
�2 − 3� +

2

1 + �1 + �hx�x=−x0
�2� �A11 + A23 − A12 − A13�

96��x0 − x�2
. �A6�

Here, E1�h ,hx� corresponds to the excess energy per unit substrate area within the film region �x�−x0 in Fig. 3� and it is a
function of the local film thickness h and the local film slope hx. Similarly, E2��x0−x� ,hx�x=−x0

� corresponds to the same quantity
outside the film region. It is determined by the contact angle hx�x=−x0

and the distance to the contact line �x0−x�. The local film
thickness h and the distance to the contact line from outside the thin film region �x0−x� cannot be exactly equal to zero because
the closest approach distance is restricted to the molecular cutoff length D, leading to bounded expressions in Eqs. �A5� and
�A6�.
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